

Jingxuan Yang

✉ jingxuanyang15@gmail.com ☎ +44 7585226173 ⚡ jingxuan97.github.io [in](#) Jingxuan Yang

Education

University of Oxford - PhD Physics	2020 – 2025
◦ Identified the composition of exoplanet atmospheres using sparse space telescope data	
◦ Performed high-dimensional Bayesian inference on noisy spectra using computer clusters	
◦ Published a NASA-listed open-source Python package used by multiple research teams	
University College London - MSc Planetary Science	2019 – 2020
◦ Grade: Distinction	
◦ Designed cloud models for the European Space Agency’s Ariel mission using Python and Fortran	
University of Cambridge - MSci Natural Sciences (Astrophysics)	2015 – 2019
◦ Grade: First Class	
◦ Applied N-body simulations to study impact-driven atmospheric evolution on exoplanets	
◦ Recipient of the Rowley Mainhood Prize for outstanding academic performance	

Experience

University of Oxford - Tutor & Lab Demonstrator	2021 – 2024
◦ Taught Mathematical Methods, Atmospheric Physics and Statistics tutorials to undergraduates	
◦ Supervised undergraduate students for the Atmospheric Physics Lab practicals	
Menlo Security - Software Engineer Intern (UK Office, Two Summers)	2020 – 2021
◦ Developed asynchronous Python APIs to integrate third-party content inspection	
◦ Improved inter-process communication with FIFO pipes	

Projects

NEMESISPY: A Python Package for Exoplanets	GitHub ↗
◦ Developed a software to analyse spectra of exoplanet atmospheres	
◦ Implemented a just-in-time compiler to accelerate Python execution, achieving $100\times$ runtime speed-up	
◦ Listed on the NASA Exoplanet Modeling and Analysis Center (EMAC ↗)	
◦ Used by the astrophysics community to study the composition of three exoplanets	
Characterising the hot Jupiter WASP-43b	Thesis ↗
◦ Led an international collaboration to study the composition of the exoplanet WASP-43b	
◦ Analysed data from the Hubble Space Telescope and the James Webb Space Telescope	
◦ Revealed that WASP-43b has a surprisingly high-metallicity and carbon-to-oxygen ratio atmosphere	
◦ Concluded that WASP-43b likely formed in a metal-rich environment with enhanced carbon content	

First Author Publications

- “NEMESISPY: A Python package for simulating and retrieving exoplanetary spectra”, [JOSS](#) ↗, 2024
- “Simultaneous retrieval of orbital phase resolved JWST/MIRI emission spectra of the hot Jupiter WASP-43b: evidence of water, ammonia, and carbon monoxide”, [MNRAS](#) ↗, 2024
- “Testing 2D temperature models in Bayesian retrievals of atmospheric properties from hot Jupiter phase curves”, [MNRAS](#) ↗, 2023